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Abstract

High accuracy and machining capability are the main requirements for metal cutting operations, and
high cutting speed and feed rate increase machining accuracy and material removal rate, but lower tool
life. In this paper, a tool wear life model is developed during milling and a method is proposed to
determine the cutting parameters that maximize the tool wear life under certain metal removal rates.
The tool wear model is constructed by a polynomial regression model using simulation data from
Deform 3D and the cutting parameters are optimized using Matlab’s fmincon function. The proposed
method is verified through cutting of high temperature alloy Ti6A14V and can be applied to determine
cutting parameters that maximize tool life in machining various hard-working materials.
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1. Introduction

High cutting speed and feed rate increase machining accuracy and metal removal, but
increase tool temperature, accelerate wear and shorten tool life. Since both material removal
rate and tool life are related to cutting parameters, the cutting parameters should be chosen
appropriately [,

Hence, many studies have been carried out to clarify the relationship between tool wear and
cutting conditions and to optimize cutting conditions.

A mathematical model about the tool wear life and cutting parameters was investigated for
two different tool materials (CBN, ceramics) by means of an empirical method when turning
high-hardness steel @ and an empirical model about tool life and cutting parameters was
established and the cutting parameters were optimized based on experiments and linear
regression models for high-speed milling of titanium alloys [, The study shows that the tool
life increases with decreasing cutting speed and increasing depth of cut at constant
efficiency.

A tool wear prediction model and a cutting parameter optimization model were developed
using an improved BP neural network based on genetic algorithm ™ and an experimental
study was carried out for turning operations using the TSK fuzzy modelling for the multi-
sensor information integration with wear information 1. The modelling rules were generated
directly from the data acquired by the sensors.

In 61 mathematical models for the tool wear prediction were formulated using the Response
Surfaces Methodology, in which wear is expressed as a function of the process parameters.
The Analysis of Variance was then applied to verify the adequacy of the model and its
parameters.

The effects of cutting parameters on tool life of PVD TiAIN-coated carbide tools and volume
of workpiece material removed during the machining of the N-155 iron-nickel-base
superalloy were evaluated [ and the relationships between machining parameters and output
variables were modelled by using response surface methodology (RSM). ANOVA was
performed to check the adequacy of the mathematical model and its respective variables.

A multiple response optimization of tool life and volume of removed material for achieving
maximum productivity was carried out using the desirability function approach.

In [ the grey relation based Taguchi method was applied for the multiple performance
characteristics of turning operation. A grey relational analysis of the material removal rate
and the tool wear ratio obtained from the Taguchi method reduced from the multiple
performance characteristics to a single performance characteristic which is called the grey
relational grade.

An advanced hybrid multi output optimization technique by applying weighted principal
component analysis (WPCA) incorporated with response surface methodology (RSM) was
presented (11,
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This investigation was carried out through a case study in
CNC turning of Aluminum alloy 63400 for surface
roughness (Ra) and tool vibration (db) optimization.

In 19 a comprehensive review concerning analytical and
empirical modelling of tool wear and forces of CBN tool in
hard turning, was presented. In this paper, an optimization
procedure for the productivity maximization by resorting to
a multi-objective optimization with a deterministic objective
function, in compliance with a stochastic constraint
represented by tool wear, is presented.

In other work 22, cutting force measurement was performed
for the prediction of tool wear evolution. It was found a
relationship between wear curve and cutting force variations
that shows the transitions in tool wear evolution.

The different cutting conditions are compared to reduce
tool wear using lubrication and additive during turning AISI
1045 steel %1, Using lubrication and additive contained
lubrication reduced tool wear in rate of 25% and 40%
respectively.

A sensor based monitoring system is used to provides
information about tool wear development during turning of
Ti6Al4V . The developed system can be useful when
integrated with numerical controller for recon-struction of
tool wear.

Taguchi method based on L° orthogonal array is presented
to find out the best cutting conditions and the most effective
parameter on flank wear in turning of AISI 4340 steel (%,
The results showed that depth of cut, cutting speed and feed
rate has 46%, 34% and 15% contribution on flank wear
respectively. Manivel and Gandhinathan carried out an
experimental work for optimization on hard turning opera-
tion using ANOVA and S/N ratio analysis [*¢1. They found
that cutting speed has highest contribution with 50%
followed by feed rate with 30%.

Debnath carried out an experimental work for deter-mining
of the best parameters in CNC turning of mild steel [,
According to the results, cutting speed has highest

contribution with 43%but feed rate have the least
contribution with 7% on tool wear.
Sel-varaj applied Taguchi optimization method for

machining of special stainless steel [8. It is found that
cutting speed and feed rate affect tool wear 91-92% and 7-
8% respectively. In these works, it was seen that Taguchi
based optimization methods have been used successfully for
reduced production time and costs.

In this paper, the optimization of cutting parameters during
milling of titanium alloys is carried out. A polynomial
regression equation is used to construct the tool wear model
using simulation data from Deform3D finite element
program. The cutting tests were carried out with different
cutting parameters and different geometries of the milling
cutters. Based on this model, the cutting parameters in the
machining center are optimized to improve the machining
efficiency and tool life during machining of titanium alloy.

2. Modeling of milling cutter wear life

In general, operators choose cutting parameters based on
experience, thus reducing the cutting efficiency. To increase
the cutting efficiency and improve the tool life, the cutting
parameters should be chosen appropriately.

Therefore, a relational model between tool wear life and
cutting parameters should be developed.

2.1. An empirical model of milling wear life
Taylor studied the influence of cutting parameters and tool
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materials on tool life and presented an empirical formula to
determine the cutting parameters.

CrEy

Tm _ CT KT ™ = '.'AFFI'.-.-\-E (2-1)

T yaX fYaZ
va, f, a;

Here, m is an index that indicates of influence of v on T,
reflects the cutting performance of the tool material, and the
higher the value, the smaller the effect of cutting speed on
the tool life.

Cr-cutting parameter coefficient

Kt -Other factors are the correction factors that affect the
tool life, including the machining mode, workpiece and tool
material, workpiece surface parameter, principal plane
angle, auxiliary plane angle, and principal plane arc radius.
Depending on the research objective, factors affecting tool
life are added to this equation or those with small effects are
eliminated. The cutting parameters (cutting speed, feed per
tooth, axial depth of cut, radial depth of cut) during milling
have a significant effect on the tool life and the formula is
expressed in exponential form depending only on the cutting
parameters as follows
T=Caja,v* )" (2-2)
Here, T- tool life (min), v- cutting speed (m/min), f,- feed
per tooth (mm/z), a,- axial depth of cut (mm), and a.- radial
depth of cut (mm).

The linearization by converting the above expression is

INT=InC+b, Ina, +b,Ina, +b; Inv+b,Inf, (2-3)

Converting the variable y:InT’bU:Innyizlnapyxz:|nae’x3:|r|v,x4:|n f,s
the above expression is expressed as

y =D, +0,% +b,X, +by%, +b,%, (2-4)
The experimental results of the four variables are y and have

a linear relationship. Since there is an error e for 16
experiments, the simultaneous equation of tool life is

Yo = o+ Xy + BoXop + PaXas + BiXe + &
y2 = ﬂo + ﬂlXZI + ﬂZXZZ +ﬂ3x23 +ﬂ4x24 + ‘92
Yis = Bo + BXier + BoXas 2 + PaXas s T BaXaa + E16
Representing in matrix form
Y=XB+¢ (2-5)
Here,
DXy Xy
L AN U I Y R A S PR |

Using the regression coefficient, the least squares
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approximation of the coefficient is calculated, and the
regression equation is

¥y =b, +b,x, +b,x, +b,X; +b,X, (2-6)

The regression coefficient is calculated by the following
equation:

b=(XTX)*XTY (2-7)

2.2. Polynomial regression model of tool wear life

The Taylor tool life formula has narrow coverage since only
four cutting variables reflect the effect on tool life. When
the tool is coated or the workpiece is hard-working, there is
a quadratic effect between tool life and four cutting
parameters, and there is an interaction between the four
variables. Based on statistical theory, any function can be
expressed as the sum of infinite higher order powers of all
variables. Therefore, by polynomial regression, the
relationship between tool wear life and cutting parameters is
expressed as

T=g,+aa,+a,, +av+a,f, +852,8, +8:a,V+a,a, f,+

+agaV + a3, f, +apVf, + a8’ +a,a’ +ayy’ +a,f;

(2-8)

Here,
ap :)(1’a‘e = XZ’V:X3’ fz = X4’apae = X‘S’a‘pv: Xﬁlapfz =

X8V =%, 8, f, =X, VT, =%0,85 =%, 8 =X,
2 2

Vi=x, f =X

a, ~ a,, are the regression coefficient.

i.e.

Y =8 +aX + 8% + 38X + 8%, + 83X + 8% + 3% + (5.9)
T 8gXg + 8gXg + AyoXgo + Ay Xy +8pXp +8y5Xi3 + Xy

Through the experiments, the linear regression equation can
be constructed and the regression coefficient can be found.
Y =XA+¢ (2-10)

Here, ¢ is the experimental random error, X, y; are the
experimental measurements.
1X11"'X14

Y=[y1y2~--y16]T’X:.1_><21-~x24 A=[aa-a,).e=[g, 6] (2-11)
1X16‘1“'X16,4 ’

If the effect of random error is not taken into account, the
regression coefficient matrix can be calculated from the
least squares principle.
A=(XTX)*XTY (2-12)
3. Simulation of the wear behavior of milling cutter by

deform 3D
3.1. Simulation environment determination

https://www.multisubjectjournal.com

To develop the tool wear life model, the tool wear life data
must be obtained through experiments. However, milling is
a complex process with many influencing factors, and
simple cutting tests are not only time consuming, material
consuming, labor consuming and cost-increasing, but also
difficult to obtain accurately in real time emperature,
deformation, tool wear, etc. during cutting. Deform3D is an
engineering simulation analysis program, which is an ideal
program to analyze the influence of tool design and
machining parameters on machining performance.

In this paper, the tool wear of milling tools is simulated and
analyzed using Deform3D finite element software, and the
tool wear model is constructed from the result. The
geometric parameters of the cemented carbide end mill are
given in Table 3.1.

Table 3.1: Geometric parameters of end mills

Variable Value
cutter diameter (mm) 20
number of teeth (z) 3
rake angle (°) 10
clearance angle (°) 15
helix angle (°) 30
core radius (mm) 12.4
strip width (mm) 1
cutting edge length (mm) 32
pitch (mm) 108.8
number of turns 0.27
insert material YT15
hardness (HRA) 91

The main components and physical properties of Ti6A14V
alloy are listed in the table.

Table 3.2: Chemical composition of titanium alloys

Element| Ti Al \Y/ Fe | O C N H
Content |rest| 5.5~6.75|3.5~4.5|<0.25]<0.2|<0.08|<0.05|<0.01

Table 3.3: Physical properties of titanium alloys

Density (kg/m?) 4430
hardness (HB) 349
Tensile yield strength (MPa) 880
Shear yield strength (MPa) 550
Elongation(%) 14
Elastic modulus (GPa) 113.8
Poisson's ratio 0.342
Shear strength (MPa) 550
Thermal expansion coefficient (um/(m-°C)) 8.6
Specific heat (J /(kg-°C)) 526.3
Thermal conductivity (W /(mL1)) 6.7
Melting point (°C) 1604~1660
Bphase transition temperature (°C) 980

In the present simulation, the rigid plastic finite element
method is used. That is, when importing the geometry of the
tool and the workpiece, the tool is set to rigid and the
workpiece to plastic. Grid partitioning of both tool and
workpiece uses a relative type. The tool element size is
expressed by the number of 50,000 relative grids and the
mesh of the tool tip is subdivided in a 10:1 size ratio to
increase the accuracy. That is, the tool grid is roughly
divided and the grid of the edge is subdivided by 10%.
Therefore, the element size of the tool model consists of
53033 element grids and 12204 nodes. Also, if the
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workpiece material is subdivided into 10:1 dimensions, the
workpiece element size is represented by 30,000 relative

https://www.multisubjectjournal.com

grids, including 31367 element grids and 7235 nodes. The
meshing state of the tool and workpiece is shown in Fig.3.1.

Fig 3.1: Mesh of tool and workpiece

The initial temperature of the tool is set to 20 °C. The rigid
plastic finite element solves the large deformation problem
by incremental method, and the size of incremental step
directly affects the accuracy and efficiency of the finite
element solution. The step is setted usually determined by
the size of the grid, and the smaller the grid, the smaller the
step. Here, we use a combination of minimum and isotime
step. That is, if the isotime step does not converge within a
given iteration order, it automatically converts to a sub-

iteration of the minimum time step. The isotime step is set
as the distance the tool advances along each step and is
0.065 mm in size. Metal cutting is considered to be highly
nonlinear, so the N-R method is used, convergence is judged
as a displacement criterion, and the solver chooses Sparse.
In SolidWorks, model the tool and workpiece, save it in STL
format, and open the STL file in Deform3D environment
(Figure 3.2).

Fig 3.2: Tool and workpiece model

3.2. Simulation and results analysis
The cutting parameters levels for the orthogonal

experiments are listed in Table 3.4 and the orthogonal
experimental scheme is listed in Table 3.5.

Table 3.4: Cutting parameter level

Level v(m/min) f(mm/z) ae(mm) ap(mm)
1 60 0.02 5 0.2
2 80 0.06 8 0.6
3 100 0.1 11 1
4 120 0.14 14 14
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Table 3.5: Orthogonal cutting experiment scheme

No v(m/min) f2(mm/z) ae(mm) ap(mm)
1 100 0.06 11 1.4

2 80 0.14 5 1.4

3 120 0.02 8 14

4 60 0.1 14 1.4

5 60 0.06 8 1

6 120 0.14 14 1

7 80 0.02 11 1

8 100 0.1 5 1

9 60 0.14 11 0.6
10 120 0.06 5 0.6
11 80 0.1 8 0.6
12 100 0.02 14 0.6
13 100 0.14 8 0.2
14 80 0.06 14 0.2
15 120 0.1 11 0.2
16 60 0.02 5 0.2

The tool wear process is simulated from the instant when 3.3 shows the simulation results for experiments 4 and 8.

the tool is inserted into the workpiece to steady state. Figure

No. 4 simulation

LU R A

" AW

CRE Ve
NOWR bhew

No. 8 simulation

Fig 3.3: Tool wear diagram
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From the simulation results, tool wear is the most severe at
the edge, and the maximum wear height at the flank reflects
the tool wear rule. Therefore, the maximum wear height

00X wn
00106 Max

https://www.multisubjectjournal.com

(Hmax) at the flank is used to estimate the tool wear (Fig.
3.4).

0000 Min
00106 Max

Fig 3.4: Measurement of tool wear

When the tool enters the normal wear stage, the flank wear
amount is proportional to the cutting time. The 40 mm
cutting time at experiment No. 4 is 3.59 s, and the
measurement of Deform3D is 0.0059 mm when measuring
the maximum flank wear height. Hence, when the maximum
flank wear height reaches the tool failure criterion (VB = 0.6
mm ), the tool wear life is 6.1 min. Likewise, tool wear life
can be predicted under different cutting parameters in the
other groups (Table 3.6 ).

Table 3.6: Test parameters and results

No | v.(m/min) |f.(mm/z) | a<(mm) | ap(mm) | T(min)
1 100 0.06 11 1.4 7.12
2 80 0.14 5 1.4 4.3
3 120 0.02 8 14 43.4
4 60 0.1 14 1.4 6.1
5 60 0.06 8 1 24.65
6 120 0.14 14 1 0.49
7 80 0.02 11 1 222.26
8 100 0.1 5 1 5.66
9 60 0.14 11 0.6 6.77
10 120 0.06 5 0.6 16.58
11 80 0.1 8 0.6 13.02
12 100 0.02 14 0.6 91.37
13 100 0.14 8 0.2 36.59
14 80 0.06 14 0.2 126.39
15 120 0.1 11 0.2 23.01
16 60 0.02 5 0.2 5740.5

Based on the above tool prediction model theory and test
results, the regression coefficient values are calculated using
matlab. The obtained tool life experience formula is as
follows :

T =1224898a, "', %y 2% f 2% (3-1)

The tool life polynomial is

T =100000x (0.0801-0.0261a, —0.0257a, +0.0023 ~0.6775f, + (3-2)
+0.0012a,a, —0.0003a,v—0.0013a, f, +0.0001a,v +0.0733, f, -
—0.0043f,v+0.02192 +0.0005a7 —0.0000v* +1.4426f?)

From the formula, it can be seen that the feed per tooth and
the cutting speed have a great influence on the tool life.
Increasing cutting speed accelerates tool wear and reduces
tool life due to rapid increase in tool temperature, which
leads to increased tool work hardening and adhesion.

4. Optimization of cutting parameters

After the workpiece and tool are selected, -cutting
parameters are the main factors affecting the machining
efficiency. Taking the cutting speed v, feed per tooth fz,
axial depth of cut ap and radial depth of cut ae as design
variables, we have

X :(X1’X2’X3’X4)T

When solving a multi-objective optimization problem, the
most important objective is to optimize the objective, and
the rest can be solved with constraints. The objective
function that is aimed at optimizing the tool life is:

T =100000x (0.0801-0.0261x, ~0.0257x, +0.0023% ~0.6775%, (4.1)
+0.0012x,%, —0.0003%%, —0.0013xX, +0.0001X,%; +0.0733%,X, —

~0.0043x,X, +0.0219x’ +0.0005%% —0.00001x’ +1.4426x?)

The constraints are as follows :
-Machine speed limit.

Dl

G x =
: 1000

— Xy = ﬂgl(x)z%_x4 <0 (42
1000
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ﬂDnmax T = %, — L - _

G,(X) =X, T <0G2(x) =x, T 0 (4-3)
- Feedrate limit.
Vs mi ',

f min — mein < fz < meax — f max
nma\x nminZ
Gy(X) =, =% <0 (4-4)
G,(X)=%;— f, 1 <0 4-5)
- Limitations on metal removal rates
G0 = TP (@-6)

Hence, the cutting parameter optimization model is
expressed as

max T (X) 4-7)
X = (X, X5, X5, %)

Using Matlab’s fmincon function, we can solve the
maximum problem as a minimum problem. The metal
removal rate per unit time Q (mm®min) is 300, 400, 500,
and 600, respectively.

By obtaining the optimum cutting parameters at different
metal removal rates and entering this into the tool life
model, the predicted tool wear life is obtained and
simultaneous simulation with the optimal cutting parameters
is carried out to obtain the experimental tool wear life
(Table 4.1).

Table 4.1: Experimental verification of parameter optimization

olvl f |al a Predic'tion Experirr_]ental Percentage
Tamin Tcmin Error %
300[41| 0.11 |7.9]0.55] 1255 1106 13.5
400(470.087(8.7{0.71| 2306 2104 9.6
500(50{0.081[9.3|0.83| 2838 2536 11.9
600/54/0.073/10]0.96] 3710 3203 15.8

Conclusions

In this paper, a method is proposed to determine the cutting
parameters at which the tool wear life is maximum for a
constant metal removal rate. The tool wear model was
constructed by a polynomial regression model from the
simulation data obtained by Deform3D finite element
software, and the optimization solution was performed using
Matlab’s fmincon function. The effectiveness of the
proposed method was verified through cutting of high
temperature alloy Ti6A14V and improved machining
accuracy and machining time of machining center. The error
range of tool wear life prediction is between 9.6% and
15.8%, indicating that this method can optimize cutting
parameters for tool wear life.

The proposed method can be applied to determine the
cutting parameters that maximize the tool life for machining
various hard-working materials.

https://www.multisubjectjournal.com
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