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Abstract 
High accuracy and machining capability are the main requirements for metal cutting operations, and 
high cutting speed and feed rate increase machining accuracy and material removal rate, but lower tool 
life. In this paper, a tool wear life model is developed during milling and a method is proposed to 
determine the cutting parameters that maximize the tool wear life under certain metal removal rates. 
The tool wear model is constructed by a polynomial regression model using simulation data from 
Deform 3D and the cutting parameters are optimized using Matlab’s fmincon function. The proposed 
method is verified through cutting of high temperature alloy Ti6A14V and can be applied to determine 
cutting parameters that maximize tool life in machining various hard-working materials. 
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1. Introduction 
High cutting speed and feed rate increase machining accuracy and metal removal, but 
increase tool temperature, accelerate wear and shorten tool life. Since both material removal 
rate and tool life are related to cutting parameters, the cutting parameters should be chosen 
appropriately [1]. 
Hence, many studies have been carried out to clarify the relationship between tool wear and 
cutting conditions and to optimize cutting conditions. 
A mathematical model about the tool wear life and cutting parameters was investigated for 
two different tool materials (CBN, ceramics) by means of an empirical method when turning 
high-hardness steel [2] and an empirical model about tool life and cutting parameters was 
established and the cutting parameters were optimized based on experiments and linear 
regression models for high-speed milling of titanium alloys [3]. The study shows that the tool 
life increases with decreasing cutting speed and increasing depth of cut at constant 
efficiency. 
A tool wear prediction model and a cutting parameter optimization model were developed 
using an improved BP neural network based on genetic algorithm [4] and an experimental 
study was carried out for turning operations using the TSK fuzzy modelling for the multi-
sensor information integration with wear information [5]. The modelling rules were generated 
directly from the data acquired by the sensors.  
In [6, 7] mathematical models for the tool wear prediction were formulated using the Response 
Surfaces Methodology, in which wear is expressed as a function of the process parameters. 
The Analysis of Variance was then applied to verify the adequacy of the model and its 
parameters.  
The effects of cutting parameters on tool life of PVD TiAlN-coated carbide tools and volume 
of workpiece material removed during the machining of the N-155 iron-nickel-base 
superalloy were evaluated [8] and the relationships between machining parameters and output 
variables were modelled by using response surface methodology (RSM). ANOVA was 
performed to check the adequacy of the mathematical model and its respective variables.  
A multiple response optimization of tool life and volume of removed material for achieving 
maximum productivity was carried out using the desirability function approach. 
 In [9], the grey relation based Taguchi method was applied for the multiple performance 
characteristics of turning operation. A grey relational analysis of the material removal rate 
and the tool wear ratio obtained from the Taguchi method reduced from the multiple 
performance characteristics to a single performance characteristic which is called the grey 
relational grade.  
An advanced hybrid multi output optimization technique by applying weighted principal 
component analysis (WPCA) incorporated with response surface methodology (RSM) was 
presented [10].  
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This investigation was carried out through a case study in 
CNC turning of Aluminum alloy 63400 for surface 
roughness (Ra) and tool vibration (db) optimization.  
In [11], a comprehensive review concerning analytical and 
empirical modelling of tool wear and forces of CBN tool in 
hard turning, was presented. In this paper, an optimization 
procedure for the productivity maximization by resorting to 
a multi-objective optimization with a deterministic objective 
function, in compliance with a stochastic constraint 
represented by tool wear, is presented. 
In other work [12], cutting force measurement was performed 
for the prediction of tool wear evolution. It was found a 
relationship between wear curve and cutting force variations 
that shows the transitions in tool wear evolution.  
 The different cutting conditions are compared to reduce 
tool wear using lubrication and additive during turning AISI 
1045 steel [13]. Using lubrication and additive contained 
lubrication reduced tool wear in rate of 25% and 40% 
respectively.  
 A sensor based monitoring system is used to provides 
information about tool wear development during turning of 
Ti6Al4V [14]. The developed system can be useful when 
integrated with numerical controller for recon-struction of 
tool wear. 
Taguchi method based on L9 orthogonal array is presented 
to find out the best cutting conditions and the most effective 
parameter on flank wear in turning of AISI 4340 steel [15]. 
The results showed that depth of cut, cutting speed and feed 
rate has 46%, 34% and 15% contribution on flank wear 
respectively. Manivel and Gandhinathan carried out an 
experimental work for optimization on hard turning opera-
tion using ANOVA and S/N ratio analysis [16]. They found 
that cutting speed has highest contribution with 50% 
followed by feed rate with 30%.  
Debnath carried out an experimental work for deter-mining 
of the best parameters in CNC turning of mild steel [17]. 
According to the results, cutting speed has highest 
contribution with 43%but feed rate have the least 
contribution with 7% on tool wear.  
Sel-varaj applied Taguchi optimization method for 
machining of special stainless steel [18]. It is found that 
cutting speed and feed rate affect tool wear 91-92% and 7-
8% respectively. In these works, it was seen that Taguchi 
based optimization methods have been used successfully for 
reduced production time and costs.  
 In this paper, the optimization of cutting parameters during 
milling of titanium alloys is carried out. A polynomial 
regression equation is used to construct the tool wear model 
using simulation data from Deform3D finite element 
program. The cutting tests were carried out with different 
cutting parameters and different geometries of the milling 
cutters. Based on this model, the cutting parameters in the 
machining center are optimized to improve the machining 
efficiency and tool life during machining of titanium alloy. 

 

2. Modeling of milling cutter wear life 
In general, operators choose cutting parameters based on 
experience, thus reducing the cutting efficiency. To increase 
the cutting efficiency and improve the tool life, the cutting 
parameters should be chosen appropriately. 
Therefore, a relational model between tool wear life and 
cutting parameters should be developed. 

 

2.1. An empirical model of milling wear life 
Taylor studied the influence of cutting parameters and tool 

materials on tool life and presented an empirical formula to 
determine the cutting parameters. 
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Here, m is an index that indicates of influence of v on T, 
reflects the cutting performance of the tool material, and the 
higher the value, the smaller the effect of cutting speed on 
the tool life. 
 

CT-cutting parameter coefficient 
KT -Other factors are the correction factors that affect the 
tool life, including the machining mode, workpiece and tool 
material, workpiece surface parameter, principal plane 
angle, auxiliary plane angle, and principal plane arc radius. 
Depending on the research objective, factors affecting tool 
life are added to this equation or those with small effects are 
eliminated. The cutting parameters (cutting speed, feed per 
tooth, axial depth of cut, radial depth of cut) during milling 
have a significant effect on the tool life and the formula is 
expressed in exponential form depending only on the cutting 
parameters as follows  
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Here, T- tool life (min), v- cutting speed (m/min), fz- feed 
per tooth (mm/z), ap- axial depth of cut (mm), and ae- radial 
depth of cut (mm). 
The linearization by converting the above expression is 

 

zep fbvbababCT lnlnlnlnlnln 4321    (2-3) 

 

Converting the variable 
zep fxvxaxaxCbTy ln,ln,ln,ln,ln,ln 43210  , 

the above expression is expressed as 
 

443322110 xbxbxbxbby   (2-4) 

 

The experimental results of the four variables are y and have 

a linear relationship. Since there is an error ei for 16 

experiments, the simultaneous equation of tool life is 
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Using the regression coefficient, the least squares 
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approximation of the coefficient is calculated, and the 
regression equation is 
 

443322110
ˆ xbxbxbxbby   (2-6) 

 
The regression coefficient is calculated by the following 
equation: 
 

YXXXb TT 1)(   (2-7) 

 

2.2. Polynomial regression model of tool wear life 
The Taylor tool life formula has narrow coverage since only 
four cutting variables reflect the effect on tool life. When 
the tool is coated or the workpiece is hard-working, there is 
a quadratic effect between tool life and four cutting 
parameters, and there is an interaction between the four 
variables. Based on statistical theory, any function can be 
expressed as the sum of infinite higher order powers of all 
variables. Therefore, by polynomial regression, the 
relationship between tool wear life and cutting parameters is 
expressed as  
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are the regression coefficient. 

 

i.e. 
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Through the experiments, the linear regression equation can 

be constructed and the regression coefficient can be found. 

 

 XAY   (2-10) 

 

Here, εi is the experimental random error, xij, yj are the 

experimental measurements. 
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If the effect of random error is not taken into account, the 

regression coefficient matrix can be calculated from the 

least squares principle. 

 

YXXXA TT 1)(    
(2-12) 

 

3. Simulation of the wear behavior of milling cutter by 

deform 3D 

3.1. Simulation environment determination 

To develop the tool wear life model, the tool wear life data 

must be obtained through experiments. However, milling is 

a complex process with many influencing factors, and 

simple cutting tests are not only time consuming, material 

consuming, labor consuming and cost-increasing, but also 

difficult to obtain accurately in real time emperature, 

deformation, tool wear, etc. during cutting. Deform3D is an 

engineering simulation analysis program, which is an ideal 

program to analyze the influence of tool design and 

machining parameters on machining performance. 

In this paper, the tool wear of milling tools is simulated and 

analyzed using Deform3D finite element software, and the 

tool wear model is constructed from the result. The 

geometric parameters of the cemented carbide end mill are 

given in Table 3.1. 

 
Table 3.1: Geometric parameters of end mills 

 

Variable Value 

cutter diameter (mm) 20 

number of teeth (z) 3 

rake angle (°) 10 

clearance angle (°) 15 

helix angle (°) 30 

core radius (mm) 12.4 

strip width (mm) 1 

cutting edge length (mm) 32 

pitch (mm) 108.8 

number of turns 0.27 

insert material YT15 

hardness (HRA) 91 

 

The main components and physical properties of Ti6A14V 

alloy are listed in the table. 

 
Table 3.2: Chemical composition of titanium alloys 

 

Element Ti Al V Fe O C N H 

Content rest 5.5~6.75 3.5~4.5 ≤0.25 ≤0.2 ≤0.08 ≤0.05 ≤0.01 

 
Table 3.3: Physical properties of titanium alloys 

 

Density (kg/m3 ) 4430 

hardness (HB) 349 

Tensile yield strength (MPa) 880 

Shear yield strength (MPa) 550 

Elongation(％) 14 

Elastic modulus (GPa) 113.8 

Poisson's ratio 0.342 

Shear strength (MPa) 550 

Thermal expansion coefficient (μm/(m·℃)) 8.6 

Specific heat (J /(kg·℃)) 526.3 

Thermal conductivity (W /(m )) 6.7 

Melting point (℃) 1604~1660 

βphase transition temperature (℃) 980 

 

In the present simulation, the rigid plastic finite element 

method is used. That is, when importing the geometry of the 

tool and the workpiece, the tool is set to rigid and the 

workpiece to plastic. Grid partitioning of both tool and 

workpiece uses a relative type. The tool element size is 

expressed by the number of 50,000 relative grids and the 

mesh of the tool tip is subdivided in a 10:1 size ratio to 

increase the accuracy. That is, the tool grid is roughly 

divided and the grid of the edge is subdivided by 10%. 

Therefore, the element size of the tool model consists of 

53033 element grids and 12204 nodes. Also, if the 
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workpiece material is subdivided into 10:1 dimensions, the 

workpiece element size is represented by 30,000 relative 

grids, including 31367 element grids and 7235 nodes. The 

meshing state of the tool and workpiece is shown in Fig.3.1. 

 

 
 

Fig 3.1: Mesh of tool and workpiece 

 

The initial temperature of the tool is set to 20 °C. The rigid 

plastic finite element solves the large deformation problem 

by incremental method, and the size of incremental step 

directly affects the accuracy and efficiency of the finite 

element solution. The step is setted usually determined by 

the size of the grid, and the smaller the grid, the smaller the 

step. Here, we use a combination of minimum and isotime 

step. That is, if the isotime step does not converge within a 

given iteration order, it automatically converts to a sub-

iteration of the minimum time step. The isotime step is set 

as the distance the tool advances along each step and is 

0.065 mm in size. Metal cutting is considered to be highly 

nonlinear, so the N-R method is used, convergence is judged 

as a displacement criterion, and the solver chooses Sparse. 

In SolidWorks, model the tool and workpiece, save it in STL 

format, and open the STL file in Deform3D environment 

(Figure 3.2). 

 

 
 

Fig 3.2: Tool and workpiece model 
 

3.2. Simulation and results analysis 

The cutting parameters levels for the orthogonal 

experiments are listed in Table 3.4 and the orthogonal 

experimental scheme is listed in Table 3.5. 

 
Table 3.4: Cutting parameter level 

 

Level (m/min) fz(mm/z) ae(mm) ap(mm) 

1 60 0.02 5 0.2 

2 80 0.06 8 0.6 

3 100 0.1 11 1 

4 120 0.14 14 1.4 
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Table 3.5: Orthogonal cutting experiment scheme 
 

No (m/min) fz(mm/z) ae(mm) ap(mm) 

1 100 0.06 11 1.4 

2 80 0.14 5 1.4 

3 120 0.02 8 1.4 

4 60 0.1 14 1.4 

5 60 0.06 8 1 

6 120 0.14 14 1 

7 80 0.02 11 1 

8 100 0.1 5 1 

9 60 0.14 11 0.6 

10 120 0.06 5 0.6 

11 80 0.1 8 0.6 

12 100 0.02 14 0.6 

13 100 0.14 8 0.2 

14 80 0.06 14 0.2 

15 120 0.1 11 0.2 

16 60 0.02 5 0.2 

 

The tool wear process is simulated from the instant when 

the tool is inserted into the workpiece to steady state. Figure 

3.3 shows the simulation results for experiments 4 and 8.  

 

 
 

No. 4 simulation 
 

 
 

No. 8 simulation 
 

Fig 3.3: Tool wear diagram 
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From the simulation results, tool wear is the most severe at 

the edge, and the maximum wear height at the flank reflects 

the tool wear rule. Therefore, the maximum wear height 

(Hmax) at the flank is used to estimate the tool wear (Fig. 

3.4). 

 

 
 

Fig 3.4: Measurement of tool wear 

 

When the tool enters the normal wear stage, the flank wear 

amount is proportional to the cutting time. The 40 mm 

cutting time at experiment No. 4 is 3.59 s, and the 

measurement of Deform3D is 0.0059 mm when measuring 

the maximum flank wear height. Hence, when the maximum 

flank wear height reaches the tool failure criterion (VB = 0.6 

mm ), the tool wear life is 6.1 min. Likewise, tool wear life 

can be predicted under different cutting parameters in the 

other groups (Table 3.6 ). 

 
Table 3.6: Test parameters and results 

 

No (m/min) fz(mm/z) ae(mm) ap(mm) T(min) 

1 100 0.06 11 1.4 7.12 

2 80 0.14 5 1.4 4.3 

3 120 0.02 8 1.4 43.4 

4 60 0.1 14 1.4 6.1 

5 60 0.06 8 1 24.65 

6 120 0.14 14 1 0.49 

7 80 0.02 11 1 222.26 

8 100 0.1 5 1 5.66 

9 60 0.14 11 0.6 6.77 

10 120 0.06 5 0.6 16.58 

11 80 0.1 8 0.6 13.02 

12 100 0.02 14 0.6 91.37 

13 100 0.14 8 0.2 36.59 

14 80 0.06 14 0.2 126.39 

15 120 0.1 11 0.2 23.01 

16 60 0.02 5 0.2 5740.5 

 

Based on the above tool prediction model theory and test 

results, the regression coefficient values are calculated using 

matlab. The obtained tool life experience formula is as 

follows : 

 
053.2347.2949.0494.1

98.12248 
 zep fvaaT   (3-1) 

 

The tool life polynomial is 
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From the formula, it can be seen that the feed per tooth and 

the cutting speed have a great influence on the tool life. 

Increasing cutting speed accelerates tool wear and reduces 

tool life due to rapid increase in tool temperature, which 

leads to increased tool work hardening and adhesion. 

 

4. Optimization of cutting parameters 

After the workpiece and tool are selected, cutting 

parameters are the main factors affecting the machining 

efficiency. Taking the cutting speed v, feed per tooth fz, 

axial depth of cut ap and radial depth of cut ae as design 

variables, we have 

 
TxxxxX ),,,( 4321   

 

When solving a multi-objective optimization problem, the 

most important objective is to optimize the objective, and 

the rest can be solved with constraints. The objective 

function that is aimed at optimizing the tool life is:  
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The constraints are as follows : 

-Machine speed limit. 
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- Feedrate limit. 
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- Limitations on metal removal rates 
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Hence, the cutting parameter optimization model is 

expressed as 

 

)(max xT   
(4-7)

  
 

Txxxxx ),,,( 4321
  

 

Using Matlab’s fmincon function, we can solve the 

maximum problem as a minimum problem. The metal 

removal rate per unit time Q (mm3/min) is 300, 400, 500, 

and 600, respectively. 

By obtaining the optimum cutting parameters at different 

metal removal rates and entering this into the tool life 

model, the predicted tool wear life is obtained and 

simultaneous simulation with the optimal cutting parameters 

is carried out to obtain the experimental tool wear life 

(Table 4.1 ). 

 
Table 4.1: Experimental verification of parameter optimization 

 

Q v fz ae ap 
Prediction 

Tamin 

Experimental 

Tcmin 

Percentage 

Error % 

300 41 0.11 7.9 0.55 1255 1106 13.5 

400 47 0.087 8.7 0.71 2306 2104 9.6 

500 50 0.081 9.3 0.83 2838 2536 11.9 

600 54 0.073 10 0.96 3710 3203 15.8 

 

Conclusions 

In this paper, a method is proposed to determine the cutting 

parameters at which the tool wear life is maximum for a 

constant metal removal rate. The tool wear model was 

constructed by a polynomial regression model from the 

simulation data obtained by Deform3D finite element 

software, and the optimization solution was performed using 

Matlab’s fmincon function. The effectiveness of the 

proposed method was verified through cutting of high 

temperature alloy Ti6A14V and improved machining 

accuracy and machining time of machining center. The error 

range of tool wear life prediction is between 9.6% and 

15.8%, indicating that this method can optimize cutting 

parameters for tool wear life. 

The proposed method can be applied to determine the 

cutting parameters that maximize the tool life for machining 

various hard-working materials. 

 

Acknowledgment 

I would like to take the opportunity to express my hearted 

gratitude to all those who make a contribution to the 

completion of my article. 

 

Conflict of interest 
The authors declare that there is no conflict of interest 

regarding the publication of this paper. 

 

Disclosure statement 
No potential conflict of interest was reported by the authors. 

 

Data Availability 

The data that support the findings of this study are available 

within the article. 

 

References 

1. Wu M. Cutting process-based optimization model of 

machining feature for cloud manufacturing. 

International Journal of Advanced Manufacturing 

Technology. 2016;84:327-334. 

2. Sahin Y. Comparison of tool life between ceramic and 

cubic boron nitride (CBN) cutting tools when 

machining hardened steels. Journal of Materials 

Processing Technology. 2009;209:3478-3489. 

3. Man Z, He N. Miller wear in milling Ti alloy with 

nitrogen gas media. Transactions of Nanjing University 

of Aeronautics and Astronautics. 2002;19(2):140-144. 

4. Arrazola P. Numerical modelling of 3-D hard turning 

using Arbitrary Eulerian-Lagrangian finite element 

method. International Journal of Machine Tools and 

Manufacture. 2008;3(3):1003-1014. 

5. Ren Q, Balazinski M, Baron L, Jemielniak K. TSK 

fuzzy modeling for tool wear condition in turning 

processes: An experimental study. Engineering 

Applications of Artificial Intelligence. 2011;24(2):260-

265. 

6. Mandal N, Doloi B, Mondal B. Development of flank 

wear prediction model of zirconia toughened alumina 

(ZTA) cutting tool using response surface methodology. 

International Journal of Refractory Metals and Hard 

Materials. 2011;29(2):273-280. 

7. Berkani S, Bouzid L, Bensouilah H, Yallese MA, 

Girardin F, Mabrouki T. Modeling and optimization of 

tool wear and surface roughness in turning of austenitic 

stainless steel using response surface methodology. 

22ème Congrès Français de Mécanique. 2015. 

8. Davoodi B, Eskandari B. Tool wear mechanisms and 

multi-response optimization of tool life and volume of 

material removed in turning of N-155 iron-nickel-base 

superalloy using response surface methodology. 

Measurement. 2015;68:286-294. 

9. Kumar U, Singh A, Kumar R. Optimization of 

machining parameters for tool wear rate and material 

removal rate in CNC turning by grey relational 

analysis. International Journal of Applied Engineering 

Research. 2016;11(4):2771-2775. 

10. Sahoo P, Pratap A, Bandyopadhyay A. Modeling and 

optimization of surface roughness and tool vibration in 

CNC turning of aluminum alloy using hybrid RSM-

WPCA methodology. International Journal of Industrial 

Engineering Computations. 2017;8(3):385-398. 

11. Patel VD, Gandhi AH. Analytical and empirical 

modeling of wear and forces of CBN tool in hard 

https://www.multisubjectjournal.com/


International Journal of Multidisciplinary Trends https://www.multisubjectjournal.com 

~ 25 ~ 

turning. Journal of the Institution of Engineers (India): 

Series C. 2017;98(4):507-513. 

12. Kious M, Ouahabi A, Boudraa M, Serra R, Cheknane 

A. Detection process approach of tool wear in high-

speed milling. Measurement. 2010;43:1439-1446. 

13. Maruda RW, Krolczyk GM, Feldshtein E, Nieslony P, 

Tyliszczak B, Pusavec F. Tool wear characterization in 

finish turning of AISI 1045 carbon steel under minimum 

quantity cooling lubrication (MQCL) conditions. Wear. 

2017;372-373:54-67. 

14. Caggiano A, Napolitano F, Teti R. Dry turning of 

Ti₆Al₄V: Tool wear reconstruction based on cognitive 

sensor monitoring. Procedia CIRP. 2017;62:209-214. 

15. Mandal N, Doloi B, Mondal B, Das R. Optimization of 

flank wear using zirconia toughened alumina (ZTA) 

cutting tool: Taguchi method and regression analysis. 

Measurement. 2011;44:2149-2155. 

16. Manivel D, Gandhinathan R. Optimization of surface 

roughness and tool wear in hard turning of austempered 

ductile iron (grade 3) using Taguchi method. 

Measurement. 2016;93:108-116. 

17. Debnath S, Reddy MM, Yi QS. Influence of cutting 

fluid conditions and cutting parameters on surface 

roughness and tool wear in turning process using 

Taguchi method. Measurement. 2016;78:111-119. 

 

https://www.multisubjectjournal.com/

