
~ 104 ~

International Journal of Multidisciplinary Trends 2019; 1(1): 104-107

E-ISSN: 2709-9369

P-ISSN: 2709-9350

www.multisubjectjournal.com

IJMT 2019; 1(1): 104-107

Received: 22-05-2019

Accepted: 22-06-2019

Dr. Bijendra Kumar

Professor, Department of

Mathematics, T M.B.U.,

Bhagalpur, Bihar, India

Corresponding Author:

Dr. Bijendra Kumar

Professor, Department of

Mathematics, T M.B.U.,

Bhagalpur, Bihar, India

Algorithmic properties of automation semigroups and

groups

Dr. Bijendra Kumar

Abstract
The algorithmic properties of automaton semigroups and groups wield significant potential for the

future of computation and language analysis. These properties form the bedrock of efficient algorithms

that power diverse applications across computer science, linguistics, and beyond. In formal language

theory, these properties pave the way for enhanced language recognition algorithms. Understanding

how automaton semigroups and groups interact and transform languages enables the development of

streamlined methods for deciphering and processing complex textual data. This has implications in

natural language processing, where machines learn to comprehend human language patterns more

effectively. Beyond linguistics, algorithmic insights into automaton semigroups and groups have

applications in cryptography and cybersecurity. By leveraging the properties of these structures, we can

design encryption techniques that secure sensitive information and communication channels against

malicious threats. Moreover, these properties encourage collaboration across disciplines.

Mathematicians, computer scientists, and linguists collaborate to unlock the intricacies of automaton

semigroups and groups, fostering cross-pollination of ideas and pushing the boundaries of

computational understanding. In essence, the algorithmic properties of automaton semigroups and

groups illuminate a path towards smarter language analysis, robust cybersecurity measures, and

interdisciplinary exploration. As technology continues to evolve, these properties will serve as catalysts

for innovation, reshaping how we process information and interact with the digital world.

Keywords: Potential, Implications, cryptography, collaboration, interact and transform

Introduction
An automation semigroup and a group are concepts from mathematics, particularly in the
realm of algebraic structures. Let's break down each term:

1. Automation Semigroup
An automation semigroup, also known as an *automaton semigroup*, is a concept that arises
in the study of automata theory and formal languages. An automaton is a theoretical device
that processes input according to a predefined set of rules. An automaton semigroup is
constructed based on the actions (or transformations) that an automaton can perform.
In formal terms, an automation semigroup is a semigroup that represents the transformations
that an automaton can apply to its states. A semigroup is a set equipped with an associative
binary operation (multiplication) that combines elements of the set. In the context of
automata, the elements of the semigroup represent the possible transformations that the
automaton can make.

2. Group
A group is a fundamental concept in abstract algebra. It is a set equipped with an associative
binary operation (multiplication), an identity element (an element that doesn't change other
elements when multiplied by them), and every element having an inverse (an element that,
when multiplied by another element, yields the identity element). In simpler terms, a group is
a mathematical structure that exhibits symmetry and invertibility. Groups appear in various
areas of mathematics and its applications, including geometry, number theory, cryptography,
and more. They are also a cornerstone of many higher-level algebraic structures. In
automation semigroup is a concept related to automata theory, representing transformations
of states, while a group is a fundamental algebraic structure with specific properties that has
applications in various mathematical and practical fields.

Algorithmic properties of automaton semigroups and groups

 Focus on a simplified scenario involving automaton transformations and their associated

semigroup.

www.multisubjectjournal.com

International Journal of Multidisciplinary Trends www.multisubjectjournal.com

~ 105 ~

Example: Automaton Semigroup and Transformation

Composition.

Imagine we have a simple automaton that operates on binary

strings. It has three states: A, B, and C. The automaton's

transition rules are as follows:

- From state A, if the input is '0', transition to state B.

- From state A, if the input is '1', remain in state A.

- From state B, if the input is '0', transition to state C.

- From state B, if the input is '1', transition to state A.

- From state C, regardless of the input, remain in state C.

This automaton can be described using a transition diagram:

Each state has a corresponding transformation

associated with it

1. Transformation `tA` for state A: This transformation

takes a binary string as input and follows the rules of

the automaton to determine the resulting state. For

example, `tA("010")` would yield the state B.

2. Transformation `tB` for state B: Similarly, this

transformation operates according to the automaton's

rules. For instance, `tB ("11010")` would result in the

state A.

3. Transformation `tC` for state C: This transformation

simply maintains the state C for any input.

Now, let's define the semigroup generated by these

transformations. The semigroup operation here is

composition of transformations, which is essentially

applying one transformation after the other. For example, to

compose `t_A` followed by `t_B`, you would apply `t_B` to

the output of `t_A`.

Algorithmic Property Illustration: Membership Problem

Suppose an automaton semigroup generated by

transformations `t_A`, `t_B`, and `t_C`. You want to

determine if a given transformation `t_X` belongs to this

semigroup.

Membership Problem Algorithm

Algorithm

1. Start with the identity transformation `t_I`, which has

no effect on any input.

2. Initialize a set of transformations to contain `t_X`.

3. For each transformation in the set:

a. For each generator transformation (`t_A`, `t_B`, `t_C`),

compute the composition of the current transformation with

the generator.

b. If the resulting composition is not already in the set, add

it to the set.

4. Repeat step 3 until no new transformations are added to

the set.

5. If `t_X` is found in the set, return "Membership is

confirmed." Otherwise, return "Membership not confirmed."

Using this algorithm, you can determine whether a given

transformation can be obtained by composing the generator

transformations within the automaton semi group.

In this example, let's say we want to check if the

transformation `t_D` (Which corresponds to transitioning

from state A to state C) belongs to the semigroup. Following

the algorithm:

1. Start with `t_I` and initialize the set with `t_D`.

2. Compose `t_D` with `t_A` to get a new transformation

that represents transitioning from state A to state C

(t_D∘t_A = t_D).

3. No new transformations are added, and `t_D` is in the

set. Membership is confirmed.

This algorithmic property demonstrates how you can

efficiently determine whether a given transformation can be

generated by composing transformations within the

automaton semigroup.

Remember, this example is simplified for illustration

purposes. Real-world cases involve more complex

automata, transformations, and algorithms, but the

fundamental principles remain the same.

Automaton semigroups

Automaton semigroups, which are associated with finite

automata, have several important theorems that help us

understand their properties and relationships with formal

languages and automata. Here are some notable theorems

related to automaton semigroups:

Krohn-Rhodes Theorem

The Krohn-Rhodes Theorem is a significant result in

automata theory that reveals the underlying structure of

finite automata. It states that any finite automaton can be

decomposed into a set of "basic" automata whose behaviors

can be combined to replicate the behavior of the original

automaton. This theorem offers a powerful way to

understand the complexity of automata through a structured

approach.

Consider a simplified example to illustrate the Krohn-

Rhodes Theorem. We have a finite automaton with two

states: A and B. This automaton recognizes even-length

binary strings. When processing inputs, it starts in state A.

Upon receiving a '0', it remains in the same state, while with

a '1', it transitions to the other state. The automaton diagram

is as follows:

www.multisubjectjournal.com

International Journal of Multidisciplinary Trends www.multisubjectjournal.com

~ 106 ~

To apply the Krohn-Rhodes decomposition, we first identify

the basic automata. In this case, each state corresponds to a

basic automaton:

1. Basic automaton 1: State A with transformation `t_A`,

where any input maps to A.

2. Basic automaton 2: State B with transformation `t_B`,

where any input maps to B.

By understanding these basic automata, we can recreate

the original automaton's behavior through composition

Let's use the input "0011" to see how this works

1. Apply basic automaton 1 (A) to "0". It remains in state

A.

2. Apply basic automaton 1 (A) to "0" again. It remains in

state A.

3. Apply basic automaton 2 (B) to "1". It transitions to

state A.

4. Apply basic automaton 2 (B) to "1" again. It transitions

back to state B.

By composing these basic automata, we've successfully

processed the input "0011", replicating the original

automaton's behavior.

In essence, the Krohn-Rhodes decomposition allows us to

break down the complexity of the original automaton into

simpler components. This is analogous to factorizing a

complex number into its prime factors. By doing so, we gain

insights into the automaton's behavior and can manipulate

and analyze it more effectively. The Krohn-Rhodes

Theorem has applications in formal language theory,

complexity analysis, and the study of computational

systems.

Nerode's Theorem

Nerode's theorem establishes the connection between

regular languages and finite automata by examining the

equivalence classes induced by the left congruence relation

on the language. This theorem helps determine when a

language is regular based on the properties of its automaton

semigroup.

Nerode's Theorem is a pivotal concept in the theory of

formal languages and automata. It provides a criterion for

determining whether a language is regular or not based on

the "indistinguishability" of strings in the language. In

simple terms, it helps us understand the distinction between

regular and non-regular languages through the behavior of

their strings.

Let's illustrate Nerode's Theorem with a numerical

example

Example: Nerode's Theorem

Consider two languages over the alphabet {0, 1}:

1. Language L1: The set of all binary strings that end with

'0', e.g., "10", "110", "11110".

2. Language L2: The set of all binary strings that end with

'1', e.g., "01", "101", "11101".

Indistinguishability

Nerode's Theorem is concerned with the concept of

"indistinguishability" between strings in a language. Two

strings are indistinguishable if, for any context, appending

the same suffix to both strings either results in both being in

the language or both being outside the language.

Example:

1. For any suffix '1', appending it to a string from L1

results in a string outside L1, while appending it to a

string from L2 results in a string inside L2.

2. Similarly, for any suffix '0', appending it to a string

from L2 results in a string outside L2, while appending

it to a string from L1 results in a string inside L1.

Application of Nerode's Theorem

Nerode's Theorem states that if a language has infinitely

many indistinguishable pairs, it is not a regular language. In

our example, L1 and L2 have an infinite number of

indistinguishable pairs because for any suffix '0' or '1', the

respective pairs are indistinguishable.

Based on Nerode's Theorem, both L1 and L2 are non-

regular languages because they have infinitely many

indistinguishable pairs. This means that no finite automaton

can accurately distinguish between the strings of these

languages, which is a key characteristic of regular

languages.

Schützenberger's Theorem

This theorem relates the ranks of the syntactic semigroup of

a regular language with the number of states in the minimal

deterministic finite automaton recognizing that language. It

establishes a connection between algebraic properties of

automaton semigroups and the combinatorial structure of

automata.

Schützenberger's Theorem and Syntactic Monoid

Consider a language L over the alphabet {0, 1} defined as

follows:

- L contains all strings of the form (01)^n, where n is a non-

negative integer.

In other words, L consists of strings that alternate between

'0' and '1' and have an even length, like "0101", "010101",

"01010101", and so on.

1. Determine the syntactic monoid Mon(L) for the given

language L.

2. Express the rational generating function RGF(L) for the

language L.

3. Explain how Schützenberger's Theorem establishes a

relationship between the syntactic monoid and the

rational generating function for the language L.

Proof

The syntactic monoid Mon (L) consists of all strings formed

by concatenating strings from the language L. In this case,

the set of strings from L is {01, 0101, 010101,...}. The

operation is concatenation, and the identity element is the

empty string ε.

The rational generating function RGF (L) for the language L

can be expressed as a formal power series:

RGF (L) = 1 / (1 - (01)^2)

Schützenberger's Theorem establishes an isomorphism

between the syntactic monoid Mon (L) and the algebra of

rational functions over the rational generating function RGF

(L). In this example, the syntactic monoid Mon (L) captures

the concatenation properties of strings from L, while the

rational generating function RGF (L) encodes the number of

strings of different lengths in L.

By understanding Schützenberger's Theorem, we can bridge

the gap between the algebraic and combinatorial aspects of

www.multisubjectjournal.com

International Journal of Multidisciplinary Trends www.multisubjectjournal.com

~ 107 ~

formal languages and gain insights into their structure and

behavior.

Kleene's Theorem (Arden's Lemma)

 While not directly about automaton semigroups, Kleene's

theorem is closely related. It states that the regular

languages are exactly the languages that can be described by

regular expressions. This theorem has implications for

understanding the relationship between formal languages

and the regular operations, which in turn are closely tied to

automaton semigroups.

Given the system of equations involving regular

expressions

1. X = aY + bZ

2. Y = aX + b

3. Z = aY

Use Kleene's Theorem (Arden's Lemma) to find a regular

expressions X, Y, and Z.

Proof

Let's solve each equation step by step using Kleene's

Theorem (Arden's Lemma):

1. Equation 1: X = aY + bZ

1. Apply Arden's Lemma to isolate Y: Y = (aY + bZ)a*

2. Substitute the value of Y into Equation 2: Y = (a(aY +

bZ)a* + b)a* = aaY + baZ + b

3. Substitute the value of Y back into Equation 1: X =

a(aaY + baZ + b) + bZ = aaaY + abaZ + ab + bZ

2. Equation 2: Y = aX + b

Substitute the value of X from Equation 1: Y = a(aaaY +

abaZ + ab + bZ) + b = aaaaY + aabaZ + aab + ab + b

3. Equation 3: Z = aY

Substitute the value of Y from Equation 2: Z = a(aaaaY +

aabaZ + aab + ab + b) = aaaaaY + aaabaZ + aaab + aab + ab

Now we have expressions for X, Y, and Z:

1. X = aaaY + abaZ + ab + bZ

2. Y = aaaaY + aabaZ + aab + ab + b

3. Z = aaaaaY + aaabaZ + aaab + aab + ab

These expressions represent the regular expressions X, Y,

and Z that satisfy the given system of equations. Kleene's

Theorem (Arden's Lemma) provides a systematic method to

find solutions to such systems involving regular

expressions, contributing to the study of formal languages

and automata.

References

1. Silva PV, Steinberg B. On a class of automata groups

generalizing lamplighter groups Internat. J Algebra

Comput. 2015;15(5–6):1213-1234.

2. Grigorchuk RI, Nekrashevich VV, Sushchanskiĭ VI.

Automata, dynamical systems, and groups Proc.

Steklov Inst. Math. 2000;231(4):128-203.

3. Epstein DBA, Cannon JW, Holt DF, Levy SVF,

Paterson MS, Thurston WP, et al. Word Processing in

Groups, Jones & Bartlett, Boston, Mass; c992.

4. Grigorčuk RI. On Burnside’s problem on periodic

groups Funktsional. Anal. i Prilozhen. 1980;14(1):53-

54.

5. Gupta N, Sidki S. On the Burnside problem for periodic

groups Math. Z. 1983;182(3):385-388.

6. Nekrashevych V. Self-similar groups Mathematical

Surveys and Monographs, vol. 117, American

Mathematical Society, Providence, RI; c2005, 117.

7. Bartholdi L, Grigorchuk R, Nekrashevych V. From

fractal groups to fractal sets Fractals in Graz

2001, Trends Math., Birkhäuser, Basel; c2003, pp. 25-

118.

8. Bartholdi L, Grigorchuk RI, Šunik Z.´ Branch Groups

Handbook of Algebra, North-Holland, Amsterdam;

c2003. p. 989-1112.

9. Grigorchuk R, Šunić Z. Self-similarity and branching in

group theory Groups St. Andrews; c2005. p. 1.

10. London Math. Soc. Lecture Note Ser., Cambridge Univ.

Press, Cambridge. 2007;339:36-95.

11. Campbell CM, Robertson EF, Ruškuc N, Thomas RM.

Automatic semigroups, Theoret. Comput. Sci.

2001;250(1–2):365-391.

www.multisubjectjournal.com

